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The biologic dkects of the oil shale industry on caged rainbow trout (or4nchw mykiss) as well
as on feral perch (Pewafluvkiadl) and roach (Ruilis nailw) were studied in the Rier Narva in
northeast Estonia. The River Narva passes the oil shale mining and processg area and thus receives
elevated amounts of polycylic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The
effet of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent
monooxygenase (MO) activities [7-ethoxyreorfin O-deeth4ie and aryl hydrocarbon hydroxylase
(AHH)] as well as conjugation enzyme activities [giutathione S&tranferase (GST) and UDP-glu-
curonosytranserase] i the liver of fish. CYPIA induction was firther studied by deing the
amount and occurrence of the CYPIA protein. Histopathology of tisues (liver, kidney, spleen, and
intestine) and the percentage of micronudei in fish erythrocytes were also detennined. Selected
PAHs and heavy metal (Cd, Cu, Hg, and Pb) were measured from fish musde and liver. In spite of
the siifiant ccumuation of PAHs, there was no induction ofMO activities in any studied fish
species. When compaed to reference samples. AHH acdvities were even decreased in feral fish at
some ofthe exposedsite. Dete n ofCYPA protei content and the ditibution ofthe CYPIA
enzyme by im un tochemitralso did not show extensive CYP1A induction. Instd, GST
activities weresi inrs at exposed sites. Detecton of histopatholog did not reveal
major chag in the morphology of tissues. The micronucleu test also did not show any evidence
Ofgotcity. Thus, fm tep etrs sudie, GST a ws mostafifecte. Thelc of cat-
alytic CYPIA induction in spite of the heavy oading ofPA s not sUdid but has bee attri
uted to the elevated content of other compounds su as he metals, some of which:can ac as
inhbitors for MOs. Another posible e on of this lack of induction is that tirough adapt
tion processes the fish cculd havc lost some of thewir sensitivty to PAHs. er compe poluton
caused by oil shale processing maskd part of the h l e measurd is study, o oil shale
industry did not have any severe effcts on fish in the RiverNa Our study illustrtes the difficul-
ties in est i risk in cas where there are numerous vaious contaminants affecti the biota.
Key work: conjugation, CYPlA, fish, heavy metal, histopathology, micronucleus, monooygenase,
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Estonian oil shale is of Middle Ordovician
origin, and its basin is the largest commer-
cially exploited oil shale deposit in the world.
Since 1916, 872 million tons of oil shale
have been excavated (1); at present, approxi-
mately 80% of its yield is used as a fuel for
electric thermal power plants (TPPs). During
the recent decades of increased economic
activity in Estonia, intensive and uncon-
trolled development in the oil shale industry
has brought serious ecologic problems to the
northeast part of the country.

The River Narva receives its pollution
mainly from drainage water from two oil
shale mines (Sirgala and Narva) and by
leachate from the oil shale ash plateaus of the
Estonian and Baltic TPPs. The average river
runoff is 400 m3/sec and the drainage area is
56,200 km2. Approximately 250 million m3
water was pumped out of the mines in 1995
(2) and was discharged directly or without
proper purification into natural bodies of
water. Some water pollution is received from
the Slantsy oil shale processing plant in
Russia. The main pollutants in the River

Narva are sulfates, chlorides, oil products,
heavy metals, and polycyclic aromatic hydro-
carbons (PAHs) (3-8). Approximately
0.8-1.2 million m3 highly alkaline waste
water per year enters the Narva (7). This
influx is formed by leachate from the ash
field of the TPPs.

Northeast Estonia also receives pollution
from TPPs via air (6). A total of 102 kg
PAHs is emitted annually: 4.2 kg is benzo-
(a)pyrene (7). PAHs will be deposited by dry
deposition or washed out by precipitation.
Within a radius of up to 1-10 km around
the Baltic TPP the daily benzo(a)pyrene
deposition load is in the range of 30-87
ng/m2, and is 9-19 ng/m2 on the northern
coast of Lake Peipsi (9). In the oil shale fly
ash there are up to 1 mg/kg Hg, 2 mg/kg Cd,
and 165 mg/kg Pb (7).

The part of the River Narva that runs
downstream from the town of Narva is an
important river lamprey spawning site. It
was also an important spawning area for
salmon, although it has lost its significance.
Approximately 80,000 people use the water

from the River Narva for drinking. Indeed,
there is a risk for aquatic life as well as a risk
for human health.

Little attention has been paid to the
effects of pollution connected with oil shale
mining, combustion, thermal processing, and
waste management on fish. Some studies in
the Estonian oil shale basin (10,11) have
shown that biomarkers of environmental
stress (e.g., content of blood electrolytes and
frequencies of micronuclei in erythrocytes)
detected in rainbow trout caged in the
drainage water of an oil shale mine differ
from control fish. The pollution caused by
leaching of the oil shale has been reported at
oil shale areas in the United States as well
(12-15). Recently, a fish liver cell line
(PLHC-1) has been used to monitor the fish-
specific effects of lipophilic contaminants in
the sediments from the River Narva (16).

The leachate of oil shale ash plateaus of
Estonian TPPs is acutely toxic for fish. This
is mainly due to the extreme alkalinity (pH
-13). Ninety-six-hour median lethal concen-
trations of leachate from ash plateaus ofTPPs
for common carp (Cyprinus carpio) and pike-
perch (Stizostedion lucioperca) were 4% and
1%, respectively (1]).

Complex mixtures of pollutants make it
difficult to determine the most suitable
methods for monitoring the aquatic contami-
nation. Cytochrome P4501A (CYP1A)-
dependent monooxygenase (MO) activities
in fish tissues have been used to detect PAH-
type pollution [reviewed by Payne et al. (18),
Di Giulio et al. (19), and Tuvikene et al.
(2Q)]. MOs represent the first step of biotrans-
formation in xenobiotic metabolism (21). In
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the second phase, endogenous molecules
such as glutathione and glucuronic acid can
be joined with the metabolites (22,23).
Xenobiotic metabolism in fish has been
regarded as an early warning sign for selected
aquatic contaminants. Inhibition of biotrans-
formation reactions can enhance toxicity and
bioaccumulation of lipophilic xenobiotics
(24). More serious effects of pollution can be
seen as changes in cellular and tissue mor-
phology (25). Vacuolization and different
lesions have been observed in the tissues of
fish collected from heavily polluted areas
(19,26,27). Further, genetic effects (e.g., the
occurrence of DNA strand breaks and
micronuclei) caused by contamination with
polycyclic or halogenated hydrocarbons
reveal those changes that can lead to muta-
genicity, carcinogenicity, teratogenicity, and
later to population changes (19,28-31).

In this study, a set of methods was used
to reveal the biologic effects of oil shale
processing on caged fish [rainbow trout
(Oncorhynchus mykiss)] and feral fish [perch
(Percafluviatilis) and roach (Rutilus rutilus)]
in the River Narva in northesast Estonia,
where the river reveals the pollution gradient
toward the Baltic Sea (16,32). The main aim
was to detect which of the methods would
be the best for future biomonitoring purpos-
es. CYP1A induction was detected by mea-
suring the catalytic activities ofMOs, and by
analyzing the CYPIA protein amount in fish
liver and CYPIA distribution in various
tissues to detect whether the enzyme protein
was present and whether it was catalytically
active. Xenobiotic metabolism was further
studied by analyzing hepatic conjugation
enzyme activities. Morphologic changes in
different tissues (liver, kidney, spleen, and
intestine) were detected and the percentage
of micronudei in fish blood was calculated
to express the genotoxicity of the pollutants.
The chemical contents of nine PAHs as U.S.
Environmental Protection Agency priority
pollutants (33) and four heavy metals were
analyzed to determine the tissue contents of
these pollutants, which were believed to be
abundant at the study areas.

Materials and Methods
Chemicals. Benzo(a)pyrene, 5-bromo-4-
chloro-3-indolylphosphate, 1 -chloro-2,4-
dinitrobenzene (CDNB), glutathione
(reduced form), nitroblue tetrazolium,
uridine 5'-diphosphoglucuronic acid, and
bovine serum albumin were purchased from
Sigma Chemical Co. (St. Louis, MO). 7-
Ethoxyresorufin was purchased from
Boehringer Mannheim GmbH (Mannheim,
Germany), and p-nitrophenol from FlukaAG
(Buchs SG, Buchs, Switzerland). The level 1
peroxidase antiperoxidase detection system
and the AEC chromogen system were from

Signet Laboratories, Inc. (Dedham, MA). All
other chemicals were of analytical grade.

Caging studies. Immature 1-summer-old
(0+) rainbow trout (0. mykiss) were
obtained from a fish farm in Roosna-Alliku
(northern Estonia). A 3-week caging experi-
ment was conducted during the fall in the
River Narva (Figure 1). The three caging
sites were a) 25 km upstream from the town
of Narva (Mustaj6gi, the proposed reference
area), the source of drinking water for the
town; b) near the ash plateaus of Baltic TPP
(5 km upstream from the town; the Narva
water reservoir); and c) 5 km downstream
from the town (Riigikiila).

In the cages made of soft net, the maxi-
mum density of fish was < 3 kg/m3. There
were 8-11 fish in the cages. The fish were
transported straight from the fish farm to the
caging sites. The cages were placed 0.5 m
under the surface of the water. Fish were not
fed during the caging. Abnormal mortality
was not observed during the experiment
(10% of the fish died at the Riigikila site).
The rainbow trout weighed 44 ± 10 g (mean
± standard deviation) and were 16 ± 1 cm in
length. There were no significant differences
between the groups in these parameters.

The physicochemical characteristics of
River Narva water at Mustajogi at the end of
the caging were as follows: temperature
6.5°C, pH 8.2, conductivity 0.33 mS/cm,
and dissolved oxygen 9.5 mg/L. The respec-
tive parameters for Baltic TPP were 10.5°C,
8.0, 0.26 mS/cm, and 10.5 mg/L; for
Riigikiila the parameters were 4.40C, 7.9,
0.22 mS/cm, and 10.0 mg/L.

Feralfish. In the fall, perch (Pe. fluvi-
atilis) and roach (R. rutilus) were caught
from the study sites in the River Narva
(Mustaj6gi, Baltic TPP, and Riigikiila).
Baltic TPP and Riigikula are isolated from

each other by a hydroelectric dam situated in
the town of Narva. The fish were caught
with gill nets within 36 hr. The nets were set
in areas with a relatively slow current. The
gill nets were checked two to three times,
and undamaged fish were collected into
cages to wait for further processing.

There were 5-10 perch and 19-21 roach
per study area. The wet weights of the perch
and roach were 100 ± 89 g and 113 ± 48 g,
respectively. The mean lengths were 19 ± 5
cm and 21 ± 3 cm, respectively. There were
no significant differences between the groups
in total length or total weight. Age was esti-
mated from length using gender-specific age-
length curves constructed for both species
from each study area. All of the fish fit the
category of4-6 years ofage (34).

During sampling, the physicochemical
characteristics of the river for the Mustaj6gi
site were as follows: temperature 11.5°C, pH
8.0, conductivity 0.30 mS/cm, and dissolved
oxygen 9.3 mg/L. The same parameters for
the Baltic TPP site were 11.1C, 7.6, 0.29
mS/cm, and 7.6 mg/L; for Riigikula they
were 10.5'C, 7.9, 0.32 mS/cm, and 9.1
mg/L, respectively.

Colletion and processing ofsamples. In
the field, fish were stunned by a blow to the
head and were examined for the presence of
gross external lesions and severe parasite
infections. Total weight and length were
measured immediately. Blood samples were
taken with a heparinized capillar straight
from the bulbus arteriosus and smear slides
were prepared for the micronudeus test. The
abdominal cavity of the fish was opened and
the gall bladder was removed intact. The
liver, spleen, trunk kidney, and intestine were
excised and representative portions were cut
and placed into 10% neutral buffered forma-
lin for histopathologic examination. White

Figure 1. Study areas (Mustajogi as reference, Baltic thermal power plant and Riigikula as exposed) in the
River Narva (northeast Estonia).
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muscle samples were cut dorsolaterally above
the horizontal plane of the fish. Liver samples
for enzyme analyses as well as liver and mus-
cle samples for chemical analyses were stored
in liquid nitrogen. The subcellular fractions
were prepared within 10 days of sampling, as
described by Tuvikene et al. (20). All micro-
somal and postmicrosomal fractions were
stored at -80°C. The air-dried micronudeus
preparations were fixed with absolute
methanol (5 min).

The condition factor (CF) was calculated
from the total weight and total length of fish
according to the formula CF = [W(g) x
L(cm)-3] x 100. The liver somatic index (LSI;
the percentage weight of detached liver of the
total fish weight) was also calculated.

Extraction and chemical analyses of
PAHs. For extraction, a sample [3 g wet
weight (ww), 2-4 fish from each species per
site] of pooled tissues were ground and boiled
with a mixture of ethanol and potassium
hydroxide. The homogeneous mass was
cooled and diluted by deionized water and
then extracted by diethyl ether.

PAH analyses were carried out with
high-performance liquid chromatography
with fluorometric detection (model 131 1;
Nauchpribor, Minsk, Belarus) according to
the method of Trapido and Palm (35). A
method based on the Schpol'skii effect, a spe-
cific fluorescence emission spectra in frozen
hexane at 77°K (36), was also applied for
quantitative determination of benzo(a)pyrene.
The detection limit was 2 ng/sample.

Chemical analyses of heavy metal.
Preparation of heavy metal samples (2-4
pooled tissues from each fish species per site;
0.5-2.5 g) for total Cd, Cu, Hg, and Pb mea-
surements was performed according to the
Finnish standards (37).

Pb, Cd, and Cu were determined by
using differential pulse anodic stripping
voltammetry. The voltammograms were
obtained with an Autolab system (Ecochemie,
Utrecht, The Netherlands) attached to a 633
VA stand (Metrohm, Henrisau, Switzerland).
The detection limits in measuring solution
were as follows: Pb, 10-9 mol/L; Cd, 10-10
mol/L; and Cu, 10-9 mol/L.

Hg was measured by a cold vapor method
using a Varian SpectrAA 250 Plus atomic
absorption spectrophotometer (Varian
Australia PTY, Mulgrave, Australia) equipped
with a VGA-77 vapor generation accessory.
The detection limit for Hg was 10-8 mol/kg.

Enzyme and protein analyses. The
enzyme and protein analyses of the studied
fish were conducted as described in
Tuvikene et al. (20). The hepatic monooxy-
genase activities were measured from the
microsomal fractions, using 7-ethoxyre-
sorufin and benzo(a)pyrene as substrates.
The deethylation of 7-ethoxyresorufin

(EROD) was measured with a Shimadzu flu-
orescence spectrophotometer (RF-5001PC;
Shimadzu Corporation, Kyoto, Japan) in a
kinetic reaction with resorufin as reference
(38). The amount of hydroxylated benzo(a)-
pyrene (AHH) was measured with a Perkin-
Elmer MPF-43A spectrofluorometer (Perkin-
Elmer, Norwalk, CT) using 3-hydroxybenzo
(a)pyrene as reference (39). Microsomal
UDP-glucuronosyltransferase (UDP-GT)
activity was measured spectrophotometrical-
ly (Shimadzu UV-240; Shimadzu) using p-
nitrophenol as the aglycone (40). Cytosolic
glutathione S-transferase (GST) activity was
analyzed with a Perkin-Elmer Lambda 2
UV/VIS spectrophotometer (Perkin-Elmer
and Co., GmbH, Uberlingen, Germany)
with CDNB as the substrate (41). The
enzyme analyses were carried out at 18°C.
The protein content in microsomal and
supernatant fractions was measured accord-
ing to the method of Bradford (42).

Immunoblotting. We randomly selected
2-4 samples from each fish species from
different study areas to screen CYP1A pro-
tein content. Microsomal protein samples
(75 pg from rainbow trout and 150 pg from
perch and roach) and CYPIA standards
[purified CYPlA1 from scup (Stenostomus
chrysops)] were analyzed by denaturing gel
electrophoresis on 6-15% acrylamide gradi-
ent gels. Proteins were electrophoretically
transferred onto 0.2 pm nitrocellulose, incu-
bated with monoclonal antibody (MAb) 1-
12-3 (anti-scup CYPlAl) (43) at 10 jg/ml
and then with goat antimouse immunoglob-
ulin G linked to alkaline phosphatase
(1/5,000 dilution). Color was developed by
enhanced chemiluminescence as directed for
the Schleicher and Schuell rad-free chemilu-
minescence detection kit (Schleicher and
Schuell, Keene, NH). Values for CYP1A
equivalents were determined from the inte-
grated optical density of the MAb 1-12-3
cross-reactive proteins relative to that of
scup CYPlAl standards.

Immunohistochemistry. Three to five ran-
domly selected tissue samples from each fish
species from different study areas were
processed and embedded in paraffin.
Standard 5-pm sections were deparaffined
and hydrated, during which they were incu-
bated in 3% H202 to block endogenous per-
oxidase (44). Sections were then analyzed for
P4501A content using MAb 1-12-3 on scup
CYPlAl (43). CYPIA in tissues was detected
by an indirect peroxidase labeling method
(45). Sections of liver from uninduced and
from P-naphthoflavone-induced rainbow
trout were included in each set as negative
and positive controls for the staining method.

Histopathology. We histologically exam-
ined 5-7 perch and 3-7 roach per site. Thin
sections (5 pm) from paraffin-embedded

tissue samples (liver, kidney, spleen, and
intestine) were cut and stained with hema-
toxylin and eosin for light microscopic exam-
ination. Apart from tissues that appeared
normal, the following morphologic changes
were categorized: degenerative changes (cell
swelling, cell hypertrophy, hydropic vacuola-
tion, hyalinization, nuclear pleomorphism,
and megalocytic hepatosis), necrotic changes
(coagulative necrosis and caseous necrosis),
acute inflammation (caused by bacterial tox-
ins and viruses), abnormal growth and cell
proliferation (as compensatory or protective
response), preneoplastic focus of cellular
alteration, and neoplasms. Abnormal struc-
tural changes were classified by their appear-
ance and intensity (focal, moderate, diffuse).

Thepiscine erythrocyte micronucleus test.
The methanol-fixed preparations were
processed further by dying with 5% Giemsa
(Sigma, St. Louis, MO) for 10 min. The
excess color was washed with distilled water
and the slides were mounted with Permount
SP-15-500 (Fisher Chemical, Fair Lawn,
NJ) and covered with a cover slip. The
preparations were dried for at least 24 hr
before the counting of micronuclei. One
thousand erythrocytes per slide were counted
for micronuclei detection under the light
microscope (x 400). To ensure the results,
the micronuclei were further observed under
an oil immersion lens (x 1,000). The
micronuclei and other nuclei lesions were
scored according to the characteristics pre-
sented in Carrasco et al. (46).

Statistical dataprocessing. The SPSS/PC+
(SPSS, Chicago, IL) software was used for sta-
tistical data processing. Because the studied
material consisted of groups that varied in
size, the assumption of equal variances was
first tested. The data were further tested with
a nonparametric Kruskal-Wallis (K-W) one-
way analysis of variance, as well as with the
nonparametric Mann-Whitney test (M-W).

Results
Contents ofPAHs. In the muscle of caged
rainbow trout and feral perch, the total con-
tent of PAHs increased downstream toward
the Baltic Sea (Tables 1 and 2). The accumu-
lation was higher in perch (up to 6.5-fold)
than in rainbow trout. The accumulation of
total PAHs in the muscle of feral roach was
also higher (up to 8.5-fold) than in rainbow
trout (Tables 1 and 3), but did not show the
same trend as in perch and rainbow trout.

Feral fish liver accumulated more PAHs
than musde (Tables 2 and 3). There were no
major differences in PAH profiles between
study sites, fish species, or fish tissues. The
dominating compounds were pyrene (45-62
and 47-53% of the total PAHs in musde and
liver, respectively) and phenanthrene (9-26
and 14-28%). The contents of fluoranthene,

Environmental Health Perspectives * Volume 107, Number 9, September 1999 747



Articles * Tuvikene et al.

benz(a)anthracene, and chrysene were also
remarkable. The percentage of 3-, 4-, and
5-ring compounds of total PAHs built up
10-27, 62-87, and 1-5%, respectively.

Contents ofheavy metal. There were no
exact trends between study sites in total heavy
metal concentrations of fish (Table 4). The
content of Hg in muscle was higher in feral
fish than in caged rainbow trout. Moreover,
feral fish musde and liver showed almost the
same amount of Hg. There were no marked
differences in Cd or Pb contents of muscle

Table 1. Representative PAHs (ng/g dry weight) in
pooled muscle samples of rainbow trout (2-4 fish
per site) caged in the River Narva.

Study site
Baltic

PAH Mustajogi TPP Riigikula
3-ring
Phenanthrene 69 197.7 139.7
Anthracene 2.6 5.4 2.8

4-ring
Fluoranthene 36.5 105 90.8
Pyrene 231.3 417.6 555.1
Benzo(a)anthracene 17.9 23.4 36.4
Chrysene 47.2 77.4 51.1

5-ring
Benzo(elpyrene + 12.4 5.4 10.7
benzo(b)fluoranthene

Benzo(a)pyrene 4.2 7.7 3.8
Total 421 840 890

Abbreviations: PAH, polycylic aromatic hydrocarbon;
TPP, thermal power plant.

Table 2. Representative PAHs (ng/g dry weight) in
pooled muscle and liver samples of feral perch
(2-4 fish per site) in the River Narva.

Study site
Baltic

Tissue/PAH Mustajogi TPP Riigikula
Muscle
3-ring
Phenanthrene 705.9 326.7 770.8
Anthracene 26.5 12.3 21.3

4-ring
Fluoranthene 299.5 313.3 479.2
Pyrene 1,240.2 1,970.0 2,416.7
Benzo(a)anthracene 109.3 170.0 300.0
Chrysene 268.6 580.0 737.5

5-ring
Benzo(e)pyrene + 88.2 93.3 80.4
benzo(b)fluoranthene

Benzola)pyrene 10.8 12.3 14.5
Total 2,749 3,478 4,820

Liver
3-ring
Phenanthrene 182.3 1,103.3 2,750.0
Anthracene 5.9 34.7 106.7

4-ring
Fluoranthene 106.9 980.0 1326.7
Pyrene 596.7 4,160.0 5,333.3
Benzo(a)anthracene 47.2 476.6 516.7
Chrysene 173.8 993.3 1,270.0

5-ring
Benzo(e)pyrene + 45.9 115.7 90.0
benzo(b)fluoranthene

Benzo(a)pyrene 6.9 34.3 47.3
Total 1,166 7,898 11,441

Abbreviations: PAH, polycylic aromatic hydrocarbon;

between caged and feral fish. Feral fish liver
contained approximately one order of magni-
tude more Cd than muscle. The liver also
seemed to be the site ofCu accumulation; the
content of Cu in the liver of feral fish was 15-
to 140-fold higher than in musde.

General physiologic indices. There were

no statistical differences in CF values
between different sites within each fish
species (K-W p-values 0.733, 0.162, and
0.715 for rainbow trout, perch, and roach,
respectively). There were also no statistical

Table 3. Representative PAHs (ng/g dry weight) in
pooled muscle and liver samples of feral roach
(2-4 fish per site) in River Narva.

Study site
Baltic

Tissue/PAH Mustajogi TPP Riigikula
Muscle
3-ring
Phenanthrene 765.0 303.3 690.8
Anthracene 15.5 11.5 21.8

4-ring
Fluoranthene 465.0 202.9 328.1
Pyrene 1,645.0 698.6 1,255.5
Benzolalanthracene 170.0 71.8 78.9
Chrysene 485.0 145.5 244.5

5-ring
Benzo(e)pyrene + 39.0 14.4 27.8
benzo(b)fluoranthene

Benzo(a)pyrene 20.0 12.9 14.5
Total 3,605 1,461 2,662

Liver
3-ring
Phenanthrene 392.8 796.5
Anthracene 14.0 18.8

4-ring
Fluoranthene 210.1 36.9
Pyrene 990.0 1,500.0
Benzo(a)anthracene 127.6 180.9
Chrysene 188.3 316.6

5-ring
Benzo(a)pyrene 18.5 32.7

Total 1,941 2,882

Abbreviations: -, not analyzed; PAH, polycylic aromatic
hydrocarbon; TPP, thermal power plant.

Table 4. Heavy metal contents (mg/kg dry weight)
in pooled fish muscle/liver samples (2-4 fish per
site) from the River Narva.

Study site
Baltic

Metal/fish Mustajogi TPP Riigikila
Mercury
Rainbow trout 0.30/- 0.13/- 0.26/-
Perch 0.70/0.36 0.86/0.47 0.37/-
Roach 0.38/0.41 0.54/0.35 0.53/0.42

Cadmium
Rainbow trout 0.01/- 0.02/- 0.01/-

Perch 0.01/0.22 0.02/- 0.04/-
Roach 0.04/0.12 0.01/0.15 0.02/0.14

Lead
Rainbow trout 0.24/- 0.29/- 0.12/-
Perch 0.38/0.66 0.09/0.82 0.28/-
Roach 0.02/0.97 0.23/0.55 0.14/1.40

Copper
Rainbow trout 1.40/- 1.45/- 1.10/-
Perch 1.22/170.5 0.93/8.0 1.10/-
Roach 3.25/64.90 1.49/57.80 0.95/14.40

Abbreviations: -, not analyzed; TPP, thermal power plant.

differences in LSI values (K-W p-values
0.194, 0.065, and 0.171 for rainbow trout,

perch, and roach, respectively) (Table 5).
However, the mean LSI of perch caught
from Riigikula was 36% higher than the
value of reference fish.

CYPIA induction and conjugation activ-
ities. There were no significant differences in
MO activities in caged rainbow trout (K-W
p-values 0.771 and 0.933 for AHH and
EROD, respectively) (Figure 2). In feral fish,
however, AHH and EROD activities differed
in most cases (K-Wp-values 0.026 and 0.163
and 0.002 and 0.076 in perch and roach,
respectively) (Figure 2). The trend was

toward decreased values at exposed areas. At
Baltic TPP, AHH activity decreased 55 and
33% in perch and roach, respectively, as

compared to Mustj6gi. At the same site,
EROD activity in perch decreased 5% and
decreased 74% in roach.

The amount of CYPIA protein did not

always follow EROD induction: thus,
CYP1A protein content was not necessarily
increased in those individual samples where
EROD activity was elevated. CYPIA content
in perch showed a trend toward elevated val-
ues at exposed areas (1.9-fold at Baltic TPP,
2.4-fold at Riigikiila) when compared to

Table 5. Condition factor and liver somatic index
in caged and feral fish from the River Narva.

Site CFa,b LSIb n

Caged rainbow trout
Mustajogi 1.06 ± 0.05 1.06 ± 0.17 11
Baltic TPP 1.05 ± 0.07 1.17 ± 0.35 8
Riigikula 1.04 ± 0.07 1.22 ± 0.22 8
K-W 0.733 0.194

Feral perch
Mustajogi 1.25±0.16 1.16±0.18 5
Baltic TPP 1.10±0.08 1.14± 0.24 10
Riigikula 1.20 ± 0.16 1.58 ±0.38 6
K-W 0.162 0.065

Feral roach
Mustajogi 1.18 ± 0.13 1.32 ± 0.28 19
Baltic TPP 1.15 ± 0.11 1.21 ± 0.23 21
K-W 0.715 0.171

Abbreviations: CF, condition factor; K-W, Kruskal-Wallis
test; LSI, liver somatic index (percentage weight of liver
per total fish weight); n, number of fish; TPP, thermal
power plant.
altlAgl/L(cml3 x 100. bMean ± standard deviation.

Table 6. CYP1A protein content (pmol/mg) and
respective EROD activity (pmol/min/mg) in select-
ed feral perch and roach from the River Narva.

Fish/site CYPMA? ERODW n

Perch
Mustajogi 2.12 ± 0.25 39.4 ± 5.8 3
Baltic TPP 2.63 ± 0.64 31.2 ± 24.2 3
RiigikOla 5.05 ± 0.94 46.7 ± 21.0 2

Roach
Mustajogi 1.98 ± 2.51 11.4 ± 21.0 4
Baltic TPP 2.95 ± 2.33 1.98 ± 2.0 4

Abbreviations: CYP1A, cytochrome P4501A; EROD, 7-
ethoxyresorufin O-deethylase; n, number of fish; TPP,
thermal power plant.
aMean ± standard deviation.
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Mustj6gi (Table 6) (K-W p-value, no statisti-
cal significance). EROD activity in the same
samples showed 0.79- and 1.2-fold changes
at Baltic TPP and Riigikiila, respectively. In
roach, CYPIA content was 1.4-fold at Baltic
TPP and EROD activity was 0.7-fold as
compared to Mustj6gi.

Immunohistochemical staining with
MAb 1-12-3 showed CYPIA in vascular
endothelial cells of spleen in few exposed
roach (data not shown). There was a weak
CYPIA staining in liver or perch as well as in
the vascular endothelium of intestine in few
roach at exposed sites (data not shown).

GST activities in both caged and feral
fish differed slightly between sampling sites
(K-W p-value 0.008 in rainbow trout and
0.03 1 in roach) (Figure 2). Baltic TPP fish
showed increased activities. The increase of
GST activity was 19% in rainbow trout and
28% in roach as compared to Mustaj6gi.
GST activity in perch was elevated by 5% at
Baltic TPP and by 59% at Riigikiila,
although statistical significance between the
groups was not clear (K-Wp-value 0.052).

UDP-GT activities did not differ
markedly (K-W p-value 0.206 in rainbow
trout, 0.068 in perch, and 0.223 in roach)
(Figure 2). The UDP-GT activity of perch,
however, was 35% lower at Baltic TPP as
compared to Mustj6gi (reference site).
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Histopathology and the micronucleu test.
Histopathologic detection of liver, kidney,
spleen, and intestine of perch and roach did
not reveal any major morphologic changes. At
MustaJ6gi, 13 feral fish (7 roach and 6 perch)
were histologically examined. In one roach
liver, a focal nonspecific necrotic lesion was
discovered. However, all of the other livers
appeared to be in good condition with no
parasitic infections. The most prominent
lesions found in this study were melano-
macrophage centers (MMCs), which were
found in the spleen of two roach (diffuse) and
one perch (moderate) at this site. The Baltic
TPP catch site consisted of 14 fish (7 roach
and 7 perch). Extensive development of
MMCs was observed in the liver of one
perch. Nevertheless, all of the other liver and
kidney tissue samples at this site appeared to
be undamaged. In the spleen, however, five of
seven perch examined had moderate to dif-
fuse appearance of MMCs. In addition, one
roach had a high density of MMCs in the
spleen. The catch of the third study site,
Riigikuila, consisted only of eight fish (five
perch and three roach). In one roach, diffuse
MMC abundance in both liver and spleen
was detected. Also, there were slight parasite
infections in the liver of two perch.

Of all of the fish examined in this study,
no signs of nuclear pleomorphism, megalocytic
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Figure 2. Responses of cytochrome P4501A-dependent monooxygenase activities and conjugation
enzyme in rainbow trout, perch, and roach caged or caught from the River Narva. The Mustaj6igi site is the
reference site, and Baltic TPP and Riigikulia are exposed sites. (A) 7-Ethoxyresorufin 0-deethylase (EROD;
mean ± standard deviation); the number of each type of fish is listed for each site. (B) Aryl hydrocarbon
hydroxiase (AHH). (C) UDP-glucuronosyltransferase (UDP-GT). (D) Glutathione S-transferase (GST).
*Significantly different from reference (Mann-Whitney p-value < 0.051.

hepatosis, or hydropic vacuolation of hepa-
tocytes were observed. Further, neither pre-
neoplastic focus of cellular alteration nor
neoplasms were found. The structure of the
anterior intestine of the fish appeared to be
intact and, except in one roach at the Baltic
TPP site, no inflammations were found.

The micronucleus test did not reveal any
significant differences between study sites. In
all cases the micronuclei frequency was low
(Mustaj6gi 1.0 and 0%, Baltic TPP 1.3 and
0.9%, and Riigikulla 0.3 and 1.0% for roach
and perch, respectively). In addition to few
micronuclei, few blebbed, lobed, and
notched nuclei and few binucleated erythro-
cytes were seen.

Discussion
The oil shale mining and processing area in
northeast Estonia is heavily polluted with
PAHs and also with other compounds. In our
study this complex mixture of pollutants
seemed to cause only a few measurable
biologic effects in fish, among them an
increase in GST activities and slight changes in
CYPIA. When the few changes detected were
compared to the chemical composition in the
study area, the biologic parameters seemed to
underestimate the chemical loading.

Accumulation of PAHs and CYPIA
induction. According to Neff (47), the relative
concentration of PAHs in aquatic ecosystems
is generally highest in the sediments, interme-
diate in aquatic biota, and lowest in the water
column. Based on this knowledge the accu-
mulation of PAHs in fish from the River
Narva was higher than would have been
expected from the content of PAHs in water
or sediment. Total PAH contents ranged from
42 ng/L at Mustaj6gi to 1,373 ng/L at
Riigikiila (48) and from 52 ng/g dry weight
(dw) at Mustaj6gi to 744 ng/g dw at RiigikiAla
(16) in water and sediments, respectively. The
total PAH content in rainbow trout muscle
ranged from 421 to 890 ng/g dw in the River
Narva. In the Tuvikene et al. (20) study,
which was conducted in south Estonia, the
total content of PAHs in rainbow trout caged
for 3 weeks ranged from 20 to 165 ng/g dw in
the River Suur Emaj6gi and up to 738 ng/g
dw in the harbor area of Lake V6rtsj~rv. In the
present study, the dominating compounds in
fish tissues were pyrene, chrysene, and fluoran-
threne. Benzo(a)pyrene, which is regarded as
highly cacinogenic amnong PAH compounds,
showed higher content in fish tissues collected
from the River Narva than in fish tissues from
other Estonian bodies ofwater (3.49)~.

In the present study, total PAH concen-
trations ranged from 1,461 to 4,820 ng/g dw
in muscle and from 1,166 to 11,441 ng/g dw
in the liver of feral fish. Similar or even high-
er concentrations of PAHs in fish have been
discovered in the Arabian Gulf (50). In that
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study, concentrations of total PAHs from
whole fish of mullet (Arias spp.) and minnow
(Siganus canaliculatus) were 3.6 and 2.7 mglg
ww, respectively. Khan et al. (50) also studied
the accumulation and elimination of PAHs
and reported that the mullet absorbed high
levels of PAHs and reached a steady-state
equilibrium after approximately 2 weeks. The
transfer of oil-exposed minnows to clean
water did not cause marked loss of the
absorbed PAHs with high molecular mass for
up to 2 weeks. This is not in accordance with
the knowledge that PAHs with high molecu-
lar mass are metabolized more rapidly than
the PAHs with low molecular mass (51). The
lack of rapid metabolism of PAHs seemed to
occur in our study as well.

Our fish material consisted of species with
different backgrounds. Rainbow trout and
perch are carnivores, whereas roach are herbi-
vores. Rainbow trout were not fed during the
caging, although they may have ingested par-
ticles from the water that flows through the
cages. The food of carnivores may contain
animals in which the chemicals have already
accumulated in greater amounts than in the
food of herbivores. The caged fish had similar
background (e.g., age, genetic background),
whereas the feral fish represented different
states of sexual maturity and ages (4-6 years
of age). These differences may have some
impact on the responses, as described by Palm
and Krause (31) and Otto and Moon (52).

PAH contents were higher in feral fish
than in caged rainbow trout. This difference
can be explained by the different exposure
time. Rainbow trout were introduced to the
study area for 3 weeks. Perch and roach,
however, had been continuously accumulat-
ing pollutants during their lifetime. This may
lead to a certain level of adaptation to the
pollutants. Further, the content of PAHs was
higher in perch and roach liver than in mus-
de at the exposed areas. The rate of pollutant
distribution to specific tissues was deter-
mined, e.g., by the regional blood flow
through each tissue. Therefore, the organs
that have a high blood flow (e.g., the liver
and the kidney) tend to accumulate xenobi-
otics most readily (53).

In spite of high concentrations of PAHs,
there was no induction in MO activities in
any studied fish species. In a previous study
(20) rainbow trout from the same stock as we
used for the present study were caged in waters
upstream from the River Narva in winter and
spring 1994. EROD and AHH activities in
rainbow trout for reference sites were similar
in that study as in the current study, but
showed clear induction of CYPIA in more
polluted sites. It can be conduded that rain-
bow trout were able to reflect the pollution
with catalytic CYPIA induction, at least in
some conditions. In feral fish AHH activities

showed decreased trends at some exposed sites.
Van der Oost et al. (54) reported similar
observations in feral roach from Amsterdam
lakes. In that study none of the CYP depen-
dent indicators (total CYP, total CYPIA,
EROD) were induced in roach from the pol-
luted sites, and the CYP also was inhibited in
fish from the more polluted areas. The authors
suggested that the pollutant levels in the stud-
ied lakes were too low to cause a significant
induction of hepatic MO enzymes or that the
control fish were exposed to MO-inducing
xenobiotics, which were not measured. In this
study the reference values ofEROD for roach
were slightly lower than in our study, 1.6 ±
1.6 and 4.1 ± 9.8 pmol/min/mg protein,
respectively. In our study the fish from the ref-
erence site were probably also slightly exposed
to MO xenobiotics.

The effects of River Narva sediment
extracts have been studied with a fish liver cell
line (PLHC-1) (16). In that in vitro study the
sediment extracts caused both CYPIA induc-
tion and cytotoxicity in the cells. This finding
is somewhat controversial to the lack of evi-
dence of catalytic CYPIA induction in vivo in
the present study. The cells may be more sen-
sitive as bioindicators than fish and/or the
sediments may have contained more biologi-
cally active compounds than the overlying
waters or fish tissues. It is also possible that
the lipophilic organic contaminants in the
sediments were more bioavailable when
extracted prior to the use for the cells and/or
the extracted samples did not contain agents
with strong inhibitory effects.

Several studies have reported an elevation
in the CYPIA system. Nelson et al. (14)
observed elevated CYP content in rats pre-
treated with oil shale retort water from Rock
Springs, Wyoming. In a caging study with
juvenile Atlantic cod (Gadus morhua) in a
polluted fjord in Norway, Goks0yr et al. (55)
observed correlations between several PAH as
well as PCB compounds and CYPIA levels
measured as EROD activity and by enzyme-
linked immunosorbent assay. However,
Goks0yr et al. (55) also emphasized the possi-
ble effects of other compounds that were not
detected in their multiparameter field study.
In our study, the lack ofMO induction at the
sites heavily polluted with PAHs may have
been due to inhibition caused, e.g., by heavy
metals. In the George study (56), Cd injec-
tion into plaice (Pleuronectes platessa) strongly
reduced EROD activity. This was proposed
to be mainly due to a decrease in enzyme pro-
tein rather than a direct inhibition of catalytic
activity. After the threshold level of > 2.4 pg
Cd/g liver, the EROD activity began to
decrease significantly. In our study, the Cd
content was approximately one order of mag-
nitude lower; however, because of a chronic
exposure this Cd amount may have had some

inhibitory effect on MO activities. Viarengo
et al. (57) observed that the EROD activity in
bass (Dicentrarchus labrax) liver, which had
previously been induced by in vitro treatment
with P-naphthoflavone or benzo(a)pyrene,
was significantly inhibited by nano- to micro-
molar concentrations of ionic Cu or Hg or
methylmercury, whereas treatments with mix-
tures of these compounds had an additive
inhibitory effect.

There were not many differences in heavy
metal contents between the fish species stud-
ied. Only Hg accumulated more in feral fish
than in caged rainbow trout. Heavy metal
contents in fish did not differ dramatically as
compared to contents from neighboring bod-
ies ofwater. According to Hodrejarv et al. (4),
the content of heavy metal (HM) in the mus-
cles of roach caught upstream of the Lake
Peipsi study area was 0.12, 0.07, 2.2, and 0.1
mg/kg dw, respectively, for Hg, Cd, Pb, and
Cu. From the same place the numbers for
perch were in the ranges of 0.05-0.2,
0.05-0.11, 0.1-2.1, and 0.1-0.2. Lake Peipsi
is a relatively dean lake in terms ofHM; they
come mainly with air pollution from oil shale
processing areas. When these values are com-
pared to values in the present study, fish from
the River Narva had higher Hg and Cu con-
centrations, Cd was almost the same, and Pb
content was even higher in fish from Lake
Peipsi. The Cu and Cd concentrations in
Baltic herring (Clupea harengus) caught in the
Finnish Gulf not far from the mouth of the
River Narva were comparable with values of
fish from the present study (58).

Coplanar PCBs have both inducing and
inhibiting effects on CYPIA (59,60). The
lack ofMO activities could be partly due to
competitive inhibition caused by coplanar
PCBs (60). Unfortunately, we did not analyze
these compounds. However, CYP1A induc-
tion may be detected with elevated enzyme
protein content even when the MO activities
are decreased (59). The present study also
suggested the possibility for using CYPIA
protein contents as a bioindicator. In addi-
tion, organotins inhibit MO activities in fish
both in vivo and in vitro (61,62). However,
these compounds may not have a major role
in CYPIA depression in the River Narva.

Mustaj6gi may not have been the best
choice for a reference area. We discovered
relatively high contents of PAHs at this site.
PAHs could have entered Mustaj6gi from
the northern part of Lake Peipsi, which is
regarded as more polluted than the southern
part of the lake. The northern part of Lake
Peipsi receives most of its pollution from the
River Rannapungerja, which brings some
drainage waters from oil shale mines. Part of
the pollution is believed to enter the area via
air. There is a PAH contamination problem
in the entire northeast portion of Estonia.
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Induction ofglutathione conjugation.
GST activity, a conjugation enzyme activity,
showed a trend toward increased values in all
studied species at exposed sites. Elevated
levels of GST activities indicated a defense
response to chemical or oxidative stress in
the cells (54). The maximum induction of
GST activity was reached in feral perch (1.6-
fold as compared to reference).

There is evidence that different organic
and inorganic pollutants are able to enhance
GST activities in fish. Di Giulio et al. (1,51
studied the effects of Black Rock Harbor
(Long Island Sound, CT) sediments polluted
with PAHs and PCBs on the biotransforma-
tion of channel catfish. They found signifi-
cantly elevated activity of liver GST. At its
highest, GST activity was 1.3-fold after 14
days of exposure. Willett et al. (63) found
elevated cytosolic GST activity in Atlantic
croaker from PAH- and PCB-contaminated
sites at the liver PAH content that was com-
parable to that in feral perch and roach in the
current study. A number of studies have also
failed to detect significant increases in hepatic
GST activities of several fish species exposed
to PAHs in the laboratory (56) or caged or
collected from the contaminated sites (20).

Rodrigues-Ariza et al. (64) observed a
significant increase in EROD and cytosolic
GST (even 1.5-fold) in Mugilsp. in response
to the high levels of organic xenobiotics.
These fish also contained high concentra-
tions of metals such as Fe and Cu. Liver Cu
content of Mugil sp. was comparable to Cu
content of fish livers from the River Narva.
Moreover, according to Martinez-Lara et al.
(65), copper (II) treatment significantly
increased GST activity after a 2-day expo-
sure, and the activity decreased at high doses.
On the contrary, George (66) failed to find
elevated GST activity in Pl. platessa after Cd
injection (up to 1 mg Cd/kg). Thus, the
interpretation of the cause for increased GST
activities in the River Narva is difficult.

Unpecific physiologic indices. In the pre-
sent study, the overall CF of fish and the LSI
were not seriously affected by the pollutants.
For example, the liver enlargement possibly
expressed the increased metabolism of xeno-
biotics (67). According to Everaarts et al.
(68), the LSI of sunfish and hardhead catfish
was increased at PAH-contaminated areas.
Theodorakis et al. (69) reported that treat-
ment with PAH-rich sediment increased the
LSI of bluegill sunfish 2-fold as compared to
controls. On the contrary, Van der Oost et
al. (70) did not observe any enlargement of
the fish liver at areas polluted with PCBs,
organochlorine pesticides, and PAHs. Based
on our data, the nonspecific parameters failed
to reveal any effects of the oil shale industry.

Histopathology/ and the micronucleus
test. The pollutants of the oil shale industry

contain several known carcinogens, such as
PAHs, nitroaromatic and aminoaromatic
compounds, and heavy metals (71). These
compounds may act as carcinogens in differ-
ent ways. PAHs can induce CYP1A in fish
and thus accelerate the disposition of hydro-
carbons, but also enhance the formation of
carcinogenic derivatives of PAHs (72). Pb,
instead, may not act as CYPIA inducer but
can be a promoter of carcinogenesis (72).

The genotoxicity of emissions from the oil
shale industry has been studied using the
Ames Salmonellalmicrosome assay (73).
Ambient air and spent oil shale ash samples
proved only weakly mutagenic, and samples
derived from both drinking water and waste
river water were not mutagenic at all. We
detected the frequency of micronuclei in fish
blood as a measure for genotoxicity but did
not find dear evidence of enhanced micronu-
dei formation at exposed areas. All values were
within limits (0-1.3%) mainly regarded as
control levels [< 1%, (74,75); < 0.8%, (76)].

Micronuclei are small intracytoplasmic
pieces of chromatin that result from impaired
mitoses of chromosome breakage. The
piscine micronucleus test has been proposed
as a potentially rapid and inexpensive in situ
biologic indicator of chemical contamination
in wild fish.

According to previous studies in Estonia,
the average number of micronucleated ery-
throcytes in rainbow trout collected from the
Narva Fish Farm (near Baltic TPP) was
2.27% and was 0.05% in material from the
South Estonian Fish Farm (31). Micronuclei
levels in fish blood can change according to
fish species. Micronuclei of roach and perch
from Lake Peipsi were 2.5 and 1.5%, respec-
tively (31). However, the piscine micronu-
cleus test has been criticized for its lack of
sensitivity to the presence and effects of
some genotoxic chemicals because no defini-
tive or consistent correlation between the
measured contamination and the frequency
of micronuclei was detected (46).

Some teleost fish living in areas contami-
nated with aromatic hydrocarbons, chlorinat-
ed hydrocarbons, pesticides, and/or metals in
the sediments have increased frequencies of
histologically identifiable diseases, including
liver neoplasms (27). In our study, histo-
pathology in the tissues of perch and roach
from the River Narva did not reveal any
major morphologic alterations. A nonspecific
necrotic lesion, cystic parenchymal degenera-
tion, found in one roach liver at Mustaj6gi
possibly resulted from a variety of agents (77).
However, there was only one visible cystic
formation in the observed section of the liver.
MMCs were seen in the spleen of perch at the
Baltic TPP site. MMCs in fish vary in num-
ber and size with such factors as age, starva-
tion, environmental stress, and disease

(78,79). In this study, all the sampled fish
were 5 ± 1 year old with no gross signs of
nutritional deficiency or health problems.
Therefore, the abundance ofMMCs could be
evidence of environmental stress at the study
area. Inflammation is a common protective
response to tissue injury. Chronic inflamma-
tion without evident bacterial, viral, or para-
sitic infection, as seen in one roach from
Baltic TPP, could be interpreted as a defen-
sive reaction of fish to foreign materials (80).

The number of fish detected by means
of histopathology was small. Therefore, the
present findings serve more as a prescreen-
ing material than as distinct evidence of
morphologic changes.
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